

NIELS BRUNEKREEF
Senior graphics programmer

ABOUT

 · Netherlands · nielsbishere.com ݢݡݠݟ
github.com/Nielsbishere · n@osomi.net

I’m a low-level graphics programmer with
over 6 years of experience focused on
real-time rendering, D3D12/DXR engine
development, shader tooling, and cross-
platform graphics.

At Lumion, I led large parts of the migration
from a legacy Effects11 codebase to
modern DXR, built custom shader tooling
and performance systems, and shipped
multiple DXR features such as RT glass,
grass, water, GI, shadows and reflections.

Outside of work, I build my own
Vulkan/D3D12 framework (running on
Android, Linux, macOS, and Windows),
experiment with emulation, and contribute
to open-source projects.

INTERESTS

Raytracing, shader compilers, graphics
R&D, emulation, baking, gardening,
building PCs, modding/playing games.

SKILLS

Graphics APIs

 D3D12, DXR, VK, OGL, D3D11, D3D9

Programming languages

 C, C++, HLSL, C#, GLSL, ARM9 ASM

Tools

 Git(Hub), VS(Code), Trello, Jira, Pix,
 SVN, CMake, NSight, RenderDoc, P4V

Engines
 Unreal, Unity, Quest3D (Lumion)

EARLIER (<2018)

- Mineblowers (Team Moose): Built spline
tools and gameplay logic for a
custom-controller Unreal game (study).

- Rail Recon (Triggered studios):
Prototyped mechanics, and VFX for a
Steam-released Unreal project (study).

- Rom hacking & Gameboy (Advance)
emulation: Tooling and emulation in
C++; parsing NDS formats and
exploring emulating ARM7TDMI & Z80.

- Minecraft modding & plugins (2012 –
2016): Created gameplay mechanics,
and server plugins in Java using
Bukkit/Forge.

EDUCATION

Breda University of Applied Sciences
 BSc. CMGT International Game Architecture and Design (2016 – 2020)

EXPERIENCE

Lumion / Quest3D – Archviz Engine
Intern → Junior → Senior Graphics Programmer (2019–Present)
 Architecture visualization software used by hundreds of thousands of architects
 worldwide. Worked on the modernization of Lumion’s renderer (FX11->DXR).
 Focused on raytracing, shaders, GPU based systems and performance.

DXR 1.1 & D3D12 Integration:

 DXR 1.1: Built support for BLAS/TLAS, shader binding tables, raytracing state
objects, inline raytracing and raytracing collections.

 Unify RT + Raster: bindless rendering, visibility buffer and instance management.
Moved from CPU to GPU due to heavy visual scripting overhead.

 Denoising via NRD (ReLAX, ReBLUR, Sigma) and OIDN/OIDN2.

 Integrated streamout for migrating tessellated trees into static geometry.

 Ported D3D9 techniques to D3D12 using pipeline state factories and by
managing descriptor sets & constant buffers.

R&D: Advanced Raytracing Features

 Prototyped GPU-based kD tree builds for raytraced caustics (photon mapping).

 Developed support for effects such as raytraced water, grass, glass, transmission,
soft shadows, GI, reflections, clip planes and colored shadows (fake caustics).

 Experimented with improved raytraced grass, camera types (VR, 360, ortho, etc.),
DoF and animated characters with dynamic BLAS updates.

Shader Infrastructure & Tooling
 Developed an HLSL parser to convert 600+ legacy shaders (SM4/5) to SM6+.

 Improved the shader system by adding includes, binaries on disk, and
maintained a newer parser for missing DXC reflection.

 Faster offline shader compilation (4.3x hit, 2.7x miss, 3.2x raygen and 1.6x gfx
shader speedups) and multi-threaded state object creation.

 Isolated DXC into a separate process to prevent editor crashes.

Performance, Debugging & Maintenance

 Enabled Shader Execution Reordering (SER) & Moved code from raygen to hit

shaders → ~5× on RTX 40xx, ~3× on AMD, ~2× on previous-gen Nvidia.

 Fixed large-scene transition bottlenecks (0–1 FPS → 50+ FPS for ~2k mesh scenes).

 FSR2 and motion vectors for TAA and/or upscaling.

 GPU memory inspection, timing/debug markers, crash diagnostics.

 Reported and debugged GPU driver issues across Nvidia, AMD, and Intel.

Open source contributions:

 microsoft/DirectXShaderCompiler: Minor bug fixes (SV_PrimitiveID, -fvk-invert-y in
lib), fix compile with new DirectX-Headers, expose DXIL reflection info.

 microsoft/DirectX-Headers: Extended ID3D12(Shader/Function)Reflection1.

 tgjones/HlslTools: 16-bit and 64-bit types (scalar, vector, matrix).

 MicrosoftDocs/win32, KhronosGroup/SPIRV-Tools: Minor typos.

Project Wisp – real-time raytracing | Graphics & optimization
October 2018 – December 2019
 Student project: Real-time raytracing for Maya viewport from the ground up.
 Responsible for; rt reflections, parenting, culling, deferred rendering, fixes.

Voxel engine | Graphics & optimization (May – June 2018)
 Student project: built a GPU-driven voxel particle system and tool for the Switch;
 implemented culling in compute and multi-draw indirect to reduce overhead.

